A Feature Selection Method Using Misclassified Patterns

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Classification Method for E-mail Spam Using a Hybrid Approach for Feature Selection Optimization

Spam is an unwanted email that is harmful to communications around the world. Spam leads to a growing problem in a personal email, so it would be essential to detect it. Machine learning is very useful to solve this problem as it shows good results in order to learn all the requisite patterns for classification due to its adaptive existence. Nonetheless, in spam detection, there are a large num...

متن کامل

Feature Selection Method Using Preferences Aggregation

The feature selection allows to choose P features among M (P<M) and thus to reduce the representation space of data. This process is increasingly useful because of the databases size increase. Therefore we propose a method based on preferences aggregation. It is an hybrid method between filter and wrapper approaches.

متن کامل

Feature selection using tabu search method

Selecting an optimal subset from original large feature set in the design of pattern classi"er is an important and di$cult problem. In this paper, we use tabu search to solve this feature selection problem and compare it with classic algorithms, such as sequential methods, branch and boundmethod, etc., and most other suboptimal methods proposed recently, such as genetic algorithm and sequential...

متن کامل

Supplier Selection Using a DEA-TOPSIS Method

  Supplier selection is one of the critical activities for firms to gain competitive advantage and achieve the objectives of the whole supply chain. In this paper based on a DEA-TOPSIS method for MADM problems a flexible strategy for supplier selection is introduced

متن کامل

A Feature Selection Method Using a Fuzzy Mutual Information Measure

Attempting to obtain a classifier or a model from datasets could be a cumbersome task, specifically, when using datasets of high dimensionality. The larger the amount of features the higher the complexity of the problem, and the larger the time that is expended in generating the outcome -the classifier or the model-. Feature selection has been proved as a good technique for choosing features th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computer Theory and Engineering

سال: 2011

ISSN: 1793-8201

DOI: 10.7763/ijcte.2011.v3.385